Начальная школа

Русский язык

Литература

История

Биология

География

Математика

 

Все начинается с укуса. Комар садится мужчине на руку, втыкает хоботок в его плоть и начинает сосать. В насекомое попадает кровь, а в руку – множество крошечных паразитов. Это личинки филярий. Микроскопические круглые черви по кровотоку направляются к лимфоузлам в ногах и половых органах человека. За год они превращаются во взрослых особей и начинают спариваться друг с другом, ежедневнопроизводя тысячи новых личинок. Врач бы заметил на УЗИ, как они там копошатся, но зараженному человеку к нему идти незачем – хоть у него внутри и оказались миллионы паразитов, никаких симптомов нет. Однако в конце концов они появляются. Погибая, черви провоцируют воспаление и блокируют течение лимфы, которая начинает скапливаться под кожей человека. Его конечности и пах распухают до огромных размеров. Бедро становится толщиной с туловище, а мошонка – размером с голову. Он больше не может работать, даже встать для него теперь проблема. От этого увечья и, соответственно, от косых взглядов ему теперь не избавиться до конца жизни. Этим мужчиной может оказаться фермер в Танзании, рыбак в Индонезии или пастух в Индии. Это не имеет значения, ведь теперь он – один из миллионов больных лимфатическим филяриозом.

Это заболевание, известное также как элефантиаз или слоновая болезнь из-за ужасающих опухлостей, к которым оно приводит, поражает людей в тропиках. Его вызывают три вида нематод – Brugia malayi, Brugia timori, а главное – Wuchereria bancrofti. Родственный им вид Onchocerca volvulus вызывает похожее заболевание – онхоцеркоз. Его переносчики – мошки, а не комары, и поражает он не лимфоузлы, а более глубокие ткани. Самки этого червя погружаются в жилистую, волокнистую плоть и вырастают там до 80 сантиметров в длину. Их личинки отправляются к коже, где вызывают нестерпимый зуд, или к глазам, где уничтожают сетчатку и зрительный нерв. Потому-то онхоцеркоз в народе и называют «речной слепотой».

Эти патологии, вместе известные как филяриоз, относятся к самым распространенным в мире – ими болеют более 150 миллионов людей, а еще полтора миллиарда рискуют заразиться. До недавнего времени эти болезни считались неизлечимыми. Существовали лекарства для убийства личинок и снятия симптомов, но взрослые особи на редкость устойчивые – против них лекарства были бесполезны. Продолжительность жизни у этих видов – десятки лет, что для нематод крайне долгий срок, так что больным приходится проходить регулярную терапию. «Из всех тропических заболеваний эти два, пожалуй, самые тяжелые», – говорит Марк Тейлор, одетый с иголочки седовласый паразитолог.

Тейлор взялся за исследование филярийных инфекций в 1989 году – его привлекла их тяжесть. Человека может поразить множество нематод, но они, как правило, вызывают не особенно заметные симптомы. Почему же нематоды, стоящие за филяриозом, провоцируют столь болезненное воспаление? Оказывается, у них есть помощник, причем мы с ним уже знакомы. В 1970-х годах исследователи рассмотрели этих червей под микроскопом и обнаружили в них структуры, напоминающие бактерий. До 1990-х годов о них благополучно забыли, зато потом выяснилось, что это Wolbachia – та самая бактерия, что включила свои гены в геном гавайских мушек, убивает самцов лунной бабочки и обитает в двух из трех видов насекомых в мире.

Та вольбахия, что поселилась в нематодах, представляет собой сжатую версию вольбахии других насекомых. Она утратила треть своего генома и навсегда стала частью организма хозяина. Нематоды тоже оказались в плену симбиоза – без бактерий они по не совсем понятным причинам не могут завершить свой жизненный цикл, а также спровоцировать тяжелое заболевание. При гибели червя вольбахия оказывается одна в человеческом теле. Поражать клетки человека она не умеет, зато вызвать иммунную реакцию – это запросто, причем не такую, как червь. По словам Тейлора, мощными симптомами филяриоз обязан совокупности реакций иммунной системы на самого червя и на его симбионтов. Увы, это означает, что гибель червей приводит к ухудшению состояния больного, ведь в предсмертных муках они выпускают наружу все свои запасы вольбахии. «Лимфоузлы разрываются, и в паховой области начинается воспаление, – с мрачным видом объясняет Тейлор. – Вам такого не нужно. Лучше убивать червей постепенно, а как это сделать с помощью противонематодных препаратов – непонятно».

Есть и другой вариант. Почему бы не оставить червей в покое и не приняться за вольбахию?

В лабораторных исследованиях Тейлор и другие выяснили, что черви погибают, если обработать их антибиотиками и убить вольбахию. Личинки не созревают, а взрослые особи теряют способность размножаться. Через некоторое время их клетки самоликвидируются. Расставание для этих партнеров – не вариант: если их симбиотическая связь нарушится, погибнут оба. Этот процесс занимает много времени, порой до 18 месяцев, но медленная смерть – тоже смерть. Поскольку у червей не остается вольбахий, их можно уничтожать без всяких опасений.

В 1990-х Тейлор с коллегами решили применить результаты исследования на практике. Им нужно было выяснить, можно ли с помощью доксициклина – это такой антибиотик – избавиться от вольбахии в организме больных филяриозом. Одна группа занялась жителями деревень в Гане, страдающими от речной слепоты, а другая – танзанийцами, зараженными лимфатическим филяриозом. Оба опыта прошли успешно. Доксициклин привел к бесплодию самок червей в Гане и уничтожил личинок в Танзании. А еще и там, и там он убил взрослых особей нематод в организме трех четвертей добровольцев, не спровоцировав при этом разрушительных иммунных реакций. Это было очень круто. «Мы впервые смогли излечить филяриоз, – радуется Тейлор. – Обычные препараты здесь бы не справились».

Однако доксициклин – это не панацея. Беременным женщинам и детям он противопоказан. К тому же он действует крайне медленно, так что больным приходится принимать его курсами на протяжении многих недель. Довольно сложно все это время поставлять антибиотик в далекие от цивилизации поселения, а убедить больных пройти курс до конца – тем более. Доксициклин – не такое уж плохое оружие для борьбы с филяриозом, но Тейлор решил, что сможет придумать что-нибудь получше.

В 2007 году он собрал международную группу исследователей под названием A·WOL – консорциум «Антивольбахия». Они получили 23 миллиона долларов финансирования от фонда Билла и Мелинды Гейтс, и теперь их задача – открыть новые препараты, способные избавиться от филярийных нематод, убив их симбионта – вольбахию. Они уже рассмотрели тысячи потенциально пригодных для этого веществ и нашли кое-что многообещающее – миноциклин. В лабораторных исследованиях он показал себя на 50 % более действенным, чем доксициклин, так что ученые тут же отправились выяснять, как он себя поведет в Гане и Камеруне. Миноциклин тоже не идеален – беременным женщинам и детям принимать его также нельзя, а еще он в несколько раз дороже доксициклина. Однако группа A·WOL с тех пор исследовала еще 60 тысяч различных веществ и нашла несколько десятков кандидатов получше.

Тем временем Тейлор выяснил, что союз филярийных нематод и вольбахии, возможно, является куда менее надежным, чем считалось ранее. Он обнаружил, что в периоды, когда вольбахия нужна больше всего, ее численность повышается, а черви начинают рассматривать ее в качестве болезнетворного микроба и пытаются уничтожить. «Нематодам кажется, что вольбахия – это патоген», – объясняет он. Как бы им ни была нужна эта бактерия, они знают, что если позволить ей размножаться и дальше, то она их попросту разорвет изнутри, словно симбиотическая опухоль какая-то. Так что нематоды держат ее под контролем. Конфликты возникают даже в союзе, где один партнер не способен выжить без другого. А вместе с ними, считает Тейлор, возникают и возможности. Он уже давно искал препарат, с помощью которого можно избавиться от вольбахии, а тут оказалось, что нематоды и сами этим занимаются. Если у A·WOL получится найти вещества, запускающие в организме червя программу контроля симбионтов, можно будет превратить периодические стычки хозяина и симбионта в настоящую войну и в итоге заставить нематод уничтожить самих себя. Крайне амбициозная мысль, и ставки очень высоки. Если Тейлор сможет разрушить их симбиоз, просуществовавший вот уже 100 миллионов лет, он спасет 150 миллионов жизней.

Мы уже знаем, что микробиом – штука очень изменчивая. Он может преобразиться от одного прикосновения, обеда, нашествия паразитов, приема лекарств или просто со временем. Это динамичное образование то разгорается, то угасает, непрерывно меняя при этом свою структуру. Изменчивость микробиома лежит в основе большей части взаимодействий микробов и их хозяев. Она означает, что симбиоз может становиться выгоднее: иногда прибывшие микробы дают хозяевам свежие гены, новые способности и возможности для развития. Она означает, что в симбиозе может начаться разлад: дисбиоз или отсутствие нужных микробов порой приводит к болезни. Она означает, что симбиоз можно менять по желанию – так, как мы считаем нужным. Теодор Розбери это подметил еще в 1962 году. Микробами, живущими у нас внутри, можно «управлять так же, как и окружающим нас миром, чтобы извлечь для себя выгоду», писал он. Мы должны понять, что они – естественная часть нашей жизни, но «нельзя относиться к этому так, словно они нас не касаются».

Пятьдесят лет спустя микробы вдруг начали касаться всех подряд. Сейчас микробиологи пытаются в спешке переписать отношения микробов и их хозяев-животных – нематод, комаров, нас. Тейлор пытается их вообще уничтожить – лишить нематод их симбионтов, приведя тем самым обоих к гибели, чтобы спасти тех, кого они поразили. Другие ученые, желающие стать манипуляторами микробиома, пытаются предоставить хозяевам новых микробов, чтобы восстановить разрушенную экосистему или даже создать новый симбиоз. Они создают смеси из полезных микробов, чтобы с их помощью лечить или предупреждать болезни, разрабатывают комплексы питательных веществ, чтобы этих микробов кормить, и даже придумывают, как переместить целое сообщество от одной особи к другой.

Именно так выглядит медицина, когда мы понимаем, что микробы – не враги животных, а основа, на которой построено все наше царство. Попрощайтесь с устаревшими и опасными сравнениями наших отношений с войной, в которой солдатам нужно лишь одно – уничтожить бактерий любой ценой. Поприветствуйте более нежное и сложное сравнение с садоводством. Хоть нам и приходится вырывать сорняки, нельзя забывать о посеве и удобрении видов, что разрыхляют почву, освежают воздух и радуют глаз.

Понять все это довольно сложно, причем не только из-за того, что сама мысль о полезных микробах для многих в новинку. Она еще и противоречит здравому смыслу, ведь медицина во многом полагается на простую арифметику. У вас цинга? Вам не хватает витамина C – чтобы пополнить его запасы, ешьте больше фруктов. Грипп? У вас вирус – принимайте нужные лекарства, чтобы от него избавиться. Что нужно – прибавьте. Что не нужно – вычтите. Медицина до сих пор основана вот на таких простых уравнениях. Но математика микробиома куда сложнее, ведь она включает в себя крупные и постоянно меняющиеся сети из взаимосвязанных и взаимодействующих частей. Контролировать микробиом – то же самое, что придавать форму целому миру, то есть очень и очень сложно. Не забывайте, что сообщества по своей природе весьма устойчивы: если их толкнуть, они откатятся обратно. Они еще и непредсказуемы: если внести в них изменения, последствия могут оказаться какими угодно. Добавьте микроорганизм, который вроде бы полезен, а он раз – и вытеснит соперников, которые нам тоже нужны. Уберите микроба, который вроде бы вреден, и его место вскоре займет кто похуже. Вот почему попытки изменить мир на данный момент несколько раз привели к потрясающему успеху и много раз – к неудачам, суть которых неясна. В одной из предыдущих глав мы выяснили, что для налаживания микробиома мало избавиться от «плохих бактерий» с помощью антибиотиков. В этой главе мы узнаем, что добавление «хороших бактерий» тоже не решит проблему.

Двадцать первый век – явно не лучшее время для любителей лягушек. Эти прыгучие земноводные исчезают по всему миру с такой скоростью, что хмурятся даже самые оптимистичные специалисты по охране природы. Не меньше трети видов земноводных сейчас находятся под угрозой исчезновения. Отчасти из-за того же, что и многие другие животные: потеря среды обитания, загрязнение, климатические изменения. Но земноводным угрожает и их собственный враг. Это зловещий грибок Batrachochytrium dendrobatidis, можно просто Bd, образцовый убийца лягушек. Уплотняя кожу своих жертв и лишая их способности впитывать через нее необходимые им ионы натрия и калия, он вызывает у них нечто вроде сердечного приступа. Открыли его в 1990-х, и с тех пор он распространился по шести континентам. Он появляется там, где обитают земноводные, вот только вскоре после его появления они там обитать перестают. Этот грибок способен уничтожить целые популяции лягушек за считаные недели – из-за него уже десятки видов канули в лету. Остромордая речница, скорее всего, вымерла. И заботливых лягушек больше нет. Оранжевая жаба тоже свое отквакала. Сотни других брошены на произвол судьбы. Недаром Bd окрестили «худшим известным инфекционным заболеванием, встречающимся среди позвоночных». Лягушки, жабы, саламандры, тритоны, червяги – никому от него не укрыться. Если бы появился новый вид гриба, убивающий млекопитающих – всех собак, слонов, дельфинов, летучих мышей, людей, – мы бы, естественно, запаниковали. Как раз в таком состоянии сейчас находятся биологи, занимающиеся земноводными.

Bd – предвестник того, что ждет природу в будущем. В 2013 году был описан родственный ему вид гриба, B. salamandrivorans, поражающий хвостатых земноводных Европы и Северной Америки. По меньшей мере с 2006 года летучим мышам Северной Америки угрожает еще один грибок – он вызывает у них смертельное заболевание, известное как синдром белого носа, так что теперь полы пещер усеяны миллионами трупиков. Вот уже на протяжении десятков лет кораллы терпят эпидемию за эпидемией. Сейчас природа подвержена инфекционным заболеваниям как никогда ранее, и отчасти в этом виноваты люди. Мы разносим патогенных микробов по всему свету на самолетах, кораблях и ботинках с невиданной ранее скоростью – новые хозяева попросту не успевают приспосабливаться. Отличный пример тому – расцвет Bd. Да, он заразен. Да, он подавляет иммунитет земноводных. Но все же он – всего лишь грибок, а земноводные живут бок о бок с грибами вот уже 370 миллионов лет. Для них это не первая гонка. Этот заезд они проигрывают из-за того, что их вымотали климатические изменения, внедренные в их среду обитания хищники и загрязнение окружающей среды. Прибавьте к этому разрушительную и быстро распространяющуюся болезнь – будущее тут же перестанет казаться радужным.

Однако у Рида Харриса, специалиста по земноводным, еще осталась надежда. Харрис открыл потенциальный способ спасти лягушек от грибка-негодника. В начале 2000-х он обнаружил, что красноспинные и четырехпалые саламандры – некрупные змеевидные амфибии, обитающие на востоке США, – покрыты смесью из множества фунгицидов. Производят эти вещества не сами животные, а бактерии на их коже. Возможно, они защищают от грибка яйца саламандр – без них во влажных подземных гнездах он бы успешно размножался. И как позже выяснил Харрис, они способны остановить рост Bd. Возможно, задумался он, именно этим и объясняется устойчивость некоторых видов-везунчиков к грибку-убийце: их кожный микробиом – настоящий симбиотический щит. А может быть, эти микробы помогут предотвратить наступление Квапокалипсиса?

На другом берегу США о том же самом задумался Ванс Вреденберг. Он занимался изучением калифорнийских лягушек Сьерра-Невады и, когда Bd появился и там, уже начал терять надежду. «Я просто поверить не мог, – сокрушается он. – Этой заразой тут и не пахло – и вот она уже всех лягушек в округе поубивала». Вскоре лягушек не стало почти нигде. Почти. Лягушки, обитающие в озере у горы Коннесс, были заражены Bd, но им это не мешало жизнерадостно скакать и квакать. Bd убивает хозяев, наполняя их организмы десятками тысяч спор, но у этих лягушек спор насчитывалось лишь по несколько десятков. Грибок, что считался гибельным и переворачивал лягушек в остальных озерах кверху брюхом, у горы Коннесс оказался разве что мелким хулиганом. Что-то здесь и еще в нескольких местах не давало Bd взять верх. Узнав об эксперименте Харриса, Вреденберг вдруг понял, что именно. Он взял пробу с кожи местных лягушек, и его догадка подтвердилась – там обитали те же противогрибковые бактерии, что обнаружил Харрис у саламандр. Один вид бактерий выделялся из общей массы как своими защитными способностями, так и цветом – его представители были темно-фиолетовыми и зловеще прекрасными. Его назвали Janthinobacterium lividum. Все зовут его просто J-liv.

В лабораторных исследованиях Вреденберг и Харрис выяснили, что J-liv действительно защищает от Bd лягушек, не подвергавшихся прежде воздействию грибка. Но каким образом? Может, она вырабатывает антибиотики и ими убивает грибок напрямую? Стимулирует иммунитет лягушек? Вносит изменения в их микробиом? А может, просто занимает место на коже и грибку становится некуда приткнуться? К тому же, раз уж она такая полезная, почему бы ей не встречаться на всех лягушках, а не только на некоторых? И почему, даже когда она есть, ее так мало? «Отлично было бы разузнать все обо всех мелочах, вот только у нас времени нет, – печалится Вреденберг. – Если будем тянуть, лягушки исчезнут. У нас тут кризисная ситуация». Забудьте про мелочи. Главное, бактерия справилась, по крайней мере в уютной лаборатории. Справится ли она в природных условиях?

На тот момент Bd стремительно распространялась по Сьерра-Неваде, захватывая примерно по 700 метров в год. Вреденберг прикинул и решил, что на очереди у грибка был Даси-Бейсин – участок на высоте около 3000 метров над уровнем моря, где тысячи калифорнийских лягушек жили себе спокойно и понятия не имели, что их ждет. В общем, замечательное место, чтобы проверить мощь J-liv на практике. В 2010 году Вреденберг с коллегами отправились на Даси-Бейсин и стали отлавливать всех лягушек, которые им повстречались. На коже одной особи они обнаружили J-liv и вырастили обильные культуры этих бактерий. Затем они окунули часть пойманных лягушек в приготовленный бактериальный бульон, а всех остальных оставили в емкостях с обычной водой из пруда. Спустя несколько часов все лягушки были отпущены на волю. На волю случая и на растерзание грибку.

«Результаты нас просто потрясли!» – восторженно заявляет Вреденберг. Как и предполагалось, летом пришел Bd. Он обычным способом расправился с лягушками, побывавшими в прудовой воде: десятки спор вскоре превратились в тысячи, и каждая лягушка попрощалась со своей лягушачьей жизнью. А вот у животных, которых окунули в раствор J-liv, споры не только вскоре переставали накапливаться, но и зачастую начинали выводиться из организма. Год спустя в живых осталось около 39 % особей с J-liv, а вот все остальные погибли. Испытание сочли успешным. С помощью микроба ученые сумели защитить популяцию лягушек в природных условиях. J-liv начала считаться пробиотиком – обычно так называют йогурты и всякие пищевые добавки, но на самом деле это любой микроорганизм, способный улучшить состояние здоровья хозяина.

Однако не станут же защитники природы ловить и прививать каждую амфибию, которой угрожает Bd, – для этого придется вообще всех отлавливать. Вместо этого Харрис планирует обработать пробиотиками почву, чтобы каждая лягушка и саламандра получила дозу J-liv, просто пробегая мимо. А находящихся под угрозой исчезновения лягушек, размножающихся в неволе, можно будет прививать в лаборатории, а потом отпускать. «Возможностей много, – говорит Вреденберг, – но наша бактерия все-таки не палочка-выручалочка. Перед нами стоит сложная задача, вряд ли получится решить ее лишь с помощью бактерии». И действительно, Мэттью Бекер, учившийся когда-то у Харриса, выяснил, что с панамскими жабами Atelopus zeteki, содержащимися в неволе, такой подход вообще не работает. Этот вид – сущий призрак со шмелиной окраской: прелестное желто-черное создание, истребленное в природе грибком Bd. В наши дни эти ателопы обитают лишь в зоопарках и аквариумах. Пока Bd терроризирует их естественную среду обитания, выпускать их на волю нельзя. Несмотря на весь свой потенциал, J-liv не поможет решить проблему.

Впрочем, этого следовало ожидать. Мы уже знаем, что даже у родственных видов животных микробиом может быть совершенно разный. Нет причин полагать, что бактерия, населяющая один вид животных, захочет жить и с другим или что мы когда-нибудь откроем универсальный пробиотик, способный защитить всех земноводных. J-liv обитает на коже саламандр и лягушек США, но в Панаме ее никогда не было, и с ателопами она ни разу в ходе эволюции не пересекалась. Основываясь на имеющемся опыте, можно сказать одно: пытаться намазать американского микроба на панамскую жабу глупо и попахивает империализмом. Тем не менее Бекер не стал отчаиваться и отправился на поиски подходящего пробиотика в Панаму. Он исследовал кожные микробиомы ближайших родичей A. zeteki и обнаружил там несколько местных видов, не позволяющих Bd расти, по крайней мере в чашках Петри. Увы, заселять организмы A. zeteki эти виды тоже отказались, да и в природных условиях они с Bd не справляются. Один лучик надежды все же был: пять особей A. zeteki, пойманных Бекером, нежданно-негаданно оказались от природы устойчивы к Bd. Микробы у них на коже отличались от микробов погибших лягушек, так что сейчас Бекер пытается выяснить, какие именно бактерии в их сообществах обладают защитными свойствами. Харрис проводит похожее исследование в Мадагаскаре, рае земноводных – Bd появился там совсем недавно. Он ищет местных бактерий, препятствующих росту Bd и при этом способных жить на коже животных, если их добавляют вручную. Ни создавать новые симбиозы, ни перемещать бактерий из одной части света в другую Бекер и Харрис не собираются. «Мы просто хотим распространить бактерий, которые и так уже тут», – объясняет Харрис.

Даже если они найдут подходящих кандидатов, нужно будет еще придумать, как их заставить поселиться на лягушках. Возможно, на этот раз купания будет недостаточно. Не исключено, что придется подобрать нужное время: когда головастик превращается в лягушку, его организм полностью лишается микробов, словно лес при пожаре, – так появляется пригодная для заселения пустошь. В этот период животным больше всего угрожает Bd, но, возможно, именно этот момент идеально подходит для добавления пробиотиков. Вероятно, микробам-чужакам будет проще присоединиться к формирующемуся сообществу, в котором царит первозданный хаос, чем к уже сформированному и устойчивому. Остальные детали, наверное, тоже важны. Взять, например, микробов, что уже обитают на коже земноводных разных видов: примут ли они новичков в микробиом или сразу выгонят? А иммунная система хозяина: позволит ли она расширенному сообществу остаться на коже или же займется его корректировкой? Оказывается, мелочи все-таки имеют значение. Порой в них заключается разница между успехом и провалом, сохранением вида или его исчезновением. И в кишечнике человека они так же важны, как и на коже лягушки.

Слово «пробиотик» означает «для жизни». И по этимологии, и по значению это полная противоположность антибиотикам. Антибиотики нужны для того, чтобы избавляться от микробов, а пробиотики – для того, чтобы их получать. В начале XX века Илья Мечников стал одним из первых ученых, занявшихся продвижением в массы этой идеи. На протяжении нескольких десятков лет он регулярно пил сквашенное молоко, пытаясь таким образом поселить у себя в кишечнике молочнокислых бактерий, – он считал, что именно им болгарские крестьяне обязаны своим долгожительством. Однако после его смерти микробиологи Кристиан Гертер и Артур Исаак Кендалл доказали, что микробы, которых так боготворил Мечников, в кишечнике не задерживаются. Сколько бы вы их ни потребляли с пищей, они с ней и выйдут. И все же, несмотря на собственноручный разгром теории Мечникова, Кендалл не перестал поддерживать саму ее основу. «Скоро наступит время, когда кишечные молочнокислые бактерии начнут активно использоваться в лечении определенных кишечных заболеваний, вызванных микробами, – писал он. – Наука откроет и предъявит условия, необходимые для достижения успеха».

Ну, наука как минимум попыталась. В 1930-х японский микробиолог Минору Сирота занялся поисками микробов-крепышей, способных достичь кишечника, не погибнув в желудочном соке. В конце концов он наткнулся на один из штаммов Lactobacillus casei и начал выращивать его в прокисшем молоке. В 1935 году появилась первая баночка молочнокислого продукта под названием Yakult. Нынче в мире ежегодно продается около 12 миллиардов таких баночек. Производство пробиотиков приносит миллиарды долларов. Они насыщают не только наши животы, но и наше стремление к «природной» медицине (несмотря на то что в состав большей части пробиотиков включены модифицированные микробы, выращиваемые искусственно в течение многих поколений). В одних товарах микробы ждут поглощения в живой закваске, в других они высушены путем сублимации и упакованы в капсулы или пакетики. В одних капсулах содержится лишь один штамм микробов, в других – много. Реклама пробиотиков гласит, что они улучшают пищеварение, укрепляют иммунитет и лечат самые разные заболевания – как связанные с пищеварением, так и многие другие.

В пакетике с самым концентрированным пробиотиком содержится всего несколько сотен миллиардов бактерий. Кажется, что это много, но у нас в кишечнике их в сотни раз больше. В бутылочке йогурта бактерий совсем немного, к тому же в кишечнике взрослого человека они не играют важной роли. По большей части они принадлежат к той же категории, что так обожал Мечников, – это молочнокислые лактобациллы и бифидобактерии. Их выбрали не из-за пользы, а из-за практичности. Выращивать их легко, в прокисшей пище они уже есть, а еще они способны выжить как в упаковочном цеху, так и в желудке потребителя. «А вот в человеческом кишечнике им долго не протянуть – не хватает нужных для этого качеств», – объясняет Джефф Гордон. Для подтверждения этого его научная группа провела анализ кишечных микробиомов добровольцев, которые на протяжении семи недель ежедневно употребляли по две порции йогурта «Активиа». Содержащиеся там бактерии не колонизировали кишечник добровольцев и никак не влияли на состав их микробиома. Гертер и Кендалл говорили об этом же еще в 1920-х, а Мэттью Бекер и другие это заметили во время поисков лягушачьих пробиотиков. Такие йогурты – словно сквозняк, влетающий в одно окно и вылетающий в другое.

Кто-то начнет утверждать, что это не имеет значения: сквозняк вполне может на своем пути что-нибудь уронить. Группа Гордона обнаружила несколько подтверждений этому: йогурт, который они исследовали, порой провоцировал активацию отвечающих за расщепление углеводов генов у микробов в кишечнике мышей, хоть и ненадолго. Вскоре после этого Венди Гарретт выяснила, что один из штаммов Lactococcus lactis помогает мышам, не оставаясь у них в организме, да и в живых тоже не оставаясь. Попав в кишечник мыши, бактерии словно взрываются, освобождая в момент смерти противовоспалительные ферменты. Поселенцы из них, может, и так себе, зато хоть какую-то пользу могут принести.

Могут. А приносят ли? Ответ на этот вопрос можно найти в самом слове «пробиотики». Всемирная организация здравоохранения дает ему следующее определение: «живые микроорганизмы, которые в определенных дозах улучшают здоровье хозяина». Они полезны для здоровья по определению. Накопилась целая куча исследований, которые, на первый взгляд, это определение подтверждают. Однако большая их часть проводилась на отдельных клетках или с лабораторными животными, так что непонятно, применимы ли результаты к человеческому организму. А в исследованиях, проведенных на людях, обычно было мало испытуемых, так что результаты их сложно назвать объективными, особенно с точки зрения статистики.

Поиск среди таких исследований чего-нибудь достоверного – занятие на редкость сложное и скучное. К счастью, в известной некоммерческой организации «Кокрановское сотрудничество», занимающейся в том числе обзором и анализом исследований в области медицины, это все же сделали. И вот что решили: пробиотики ослабляют приступы гастроэнтерита и снижают риск появления диареи из-за приема антибиотиков. Еще они порой спасают недоношенных младенцев от смертельной болезни – язвенно-некротического энтероколита. И на этом все. Из-за чего, спрашивается, весь этот ажиотаж? До сих пор нет доказательств того, что пробиотики помогают больным аллергией, астмой, экземой, ожирением, диабетом, наиболее часто встречающимися воспалительными заболеваниями кишечника, аутизмом и многими другими нарушениями в работе организма, в которых обвиняют микробиом. И до сих пор неизвестно, действительно ли описанные в исследованиях улучшения происходят благодаря изменениям в микробиоме.

Органы государственного регулирования приняли эту проблему к сведению. Теперь пробиотики формально считаются пищевыми продуктами, а не лекарствами. Это значит, что их производителям не приходится преодолевать кучу бюрократических препятствий, ждущих фармацевтические компании при создании нового лекарства. Зато им запрещено утверждать, что их товар предотвращает или лечит какие-то заболевания – этим занимается медицина. Если они переступают грань допустимого, их ждут неприятные последствия. В 2010 году Федеральная торговая комиссия США подала иск на компанию Danone – та уверяла, что «Активиа» «облегчает временные нарушения» и предотвращает простуду и грипп. Вот почему в рекламе пробиотиков обычно используются туманные фразы, порой граничащие с бессмыслицей: компании-производители наперебой утверждают, что их продукты «балансируют пищеварительную систему» и «укрепляют иммунную защиту».

И даже подобные утверждения не остались без внимания противников. В 2007 году Европейский союз постановил, что компании по производству пищевых продуктов и добавок должны научно обосновать все громкие заявления, кричащие с упаковок. Если уж им охота заявить, что благодаря их продуктам люди станут здоровее, сильнее и стройнее, пусть доказывают. Ну, те и попытались – и попали впросак. Научно-экспертный совет ЕС отклонил более 90 % предложенных заявлений – в том числе абсолютно все связанные с пробиотиками. А так как само слово «пробиотик» означает пользу для здоровья, ЕС в декабре 2014 года вообще запретил использовать его на упаковках и в рекламе. Защитники пробиотиков возмутились – мол, отказ не обоснован с научной точки зрения, и теперь всей сфере пробиотиков придется несладко. Скептики же считают, что ЕС не зря вынудила производителей исправиться и предоставить доказательства, подтверждающие их голословные заявления.

Несмотря на чрезмерный ажиотаж вокруг пробиотиков, их принципы остаются неизменными. Бактерии выполняют в нашем организме множество важнейших функций – наверняка должен быть способ укрепить здоровье, проглотив или еще как-то употребив нужных микробов. Просто штаммы, которые сейчас для этого используются, оказались не теми, что нужно. Это лишь малая часть микробов, живущих бок о бок с нами, а их способности – лишь крошечная доля всего того, на что способен наш микробиом. В предыдущих главах мы познакомились с некоторыми подходящими микробами. Там и любительница слизи Akkermansia muciniphila, чье присутствие коррелирует с меньшим риском развития ожирения или истощения. Там и Bacteroides fragilis, не дающая иммунитету разозлиться и спровоцировать воспаление. Там Faecalibacterium prausnitzii, еще одна противовоспалительная малышка – в человеческом кишечнике, страдающем воспалительным заболеванием, она встречается крайне редко, зато ее появление способно облегчить симптомы у мышей. Возможно, в будущем пробиотики будут состоять именно из этих бактерий. Их способности впечатляют и представляют для нас огромную ценность. Они уже адаптированы к нашему организму, а некоторые еще и широко в нем распространены: каждая двадцатая бактерия в кишечнике здорового взрослого человека – F. prausnitzii. Они, в отличие от лактобацилл, не какая-нибудь микробиомная массовка. Они – настоящие звезды кишечника. Уж им-то его колонизировать труда не составит.

Вместе с тем успешная колонизация влечет за собой не только награду покрупнее, но и риск побольше. Пока что в истории приема пробиотиков практически не было особенно опасных случаев, но, возможно, причиной тому является их неспособность остаться в организме надолго. А что будет, если использовать более распространенных жителей кишечника? По опытам на животных мы знаем, что полученные в младенчестве микробы способны еще долго оказывать влияние на физиологию, иммунную систему и даже поведение особи. И как мы уже знаем, хороших по своей сути микробов не бывает – многие виды, в том числе наши давние симбионты, такие как H. pylori, могут как оказаться полезными, так и причинить вред. Бактерию Akkermansia во многих исследованиях боготворили и называли спасительницей, вот только выяснилось, что она, помимо всего прочего, чаще встречается у больных раком толстой и прямой кишки. К пробиотикам не следует относиться беспечно – важно понять, как именно они меняют микробиом и какие у этого могут быть последствия. Здесь, как и у лягушек, важны мелочи.

Среди сомнительных исследований пробиотиков затесались и истории успеха. Самая захватывающая из них началась в 1950-х годах в Австралии. Тогда национальное агентство по делам науки занялось поисками тропических растений, которыми можно было прокормить растущую популяцию домашнего скота. Леуцена, центральноамериканский кустарник, показалась как раз подходящим кандидатом – неприхотливая, не погибает от общипывания и содержит много белков. Увы, кроме белков она содержит еще и мимозин – алкалоид, побочные продукты которого провоцируют разрастание щитовидной железы (зоб), потерю волосяного покрова, замедление роста, а иногда и смерть. Попытки ученых вывести из леуцены эти вещества ни к чему не привели. Эдакое идеальное растение с фатальным недостатком. В 1976 году Рэймонд Джонс, нанятый правительством ученый, случайно обнаружил потенциальное решение проблемы. Пребывая на конференции на Гавайях, он обратил внимание на то, что целое стадо местных коз питается леуценой в больших количествах без какого-либо видимого вреда для здоровья. Тогда он предположил, что у местных коз в рубце – первом отделе желудка – находятся микробы, обезвреживающие мимозин.

После нескольких длительных перелетов – то с термосами со зловонной рубцовой жидкостью, то с живыми козами на борту – Джонс наконец доказал, что его предположение было верным. В середине 1980-х он пересадил бактерий из рубца гавайских коз в австралийский скот – реципиенты стали спокойно питаться леуценой. Благодаря новым микробам в желудке животные, для которых этот кустарник раньше был смертельно опасен, теперь так им объедались, что начали набирать вес на рекордной скорости. Джонс повторил то, для чего японские клопы поедают микробов, обезвреживающих инсектициды, а пустынные хомяки обмениваются друг с другом бактериями, расщепляющими креозотовую смолу, – он снабдил животных новыми сожителями, способными нейтрализовать химическую угрозу. Позже его коллеги выявили конкретную бактерию, расщепляющую мимозин, и назвали ее Synergistes jonesiiв честь Джонса. С 1996 года она начала продаваться в качестве «пробиотической болтушки» – выпускаемой в промышленных масштабах смеси рубцовых жидкостей с высоким содержанием микробов для обрызгивания домашнего скота. Благодаря этому пробиотику фермеры получили возможность кормить скот леуценой, и сельское хозяйство на севере Австралии преобразилось до неузнаваемости.

Почему же Джонсу удалось преуспеть там, где другие манипуляторы потерпели поражение? Возможно, дело в том, что он столкнулся с проблемой попроще. Ему не пришлось искать лекарство от воспалительного заболевания кишечника или противостоять грибку-убийце. Все, что от него требовалось, – обезвредить одно вещество. Вполне вероятно, что с этим бы справился всего один микроб. Но даже в таких случаях успех не гарантирован.

Вот, например, оксалаты – соли щавелевой кислоты. Они содержатся в свекле, спарже, ревене и других съедобных растениях. При высокой концентрации оксалатов организм перестает усваивать кальций, и он начинает формировать твердые комки. Камни в почках появляются в том числе и из-за этого. Мы не умеем переваривать оксалаты, а микробы умеют. Кишечная бактерия Oxalobacter formigenes так наловчилась, что только их и использует в качестве источника энергии. Казалось бы, все как с леуценой – есть такое-то вещество (оксалаты), оно вызывает такую-то проблему (камни в почках), а справиться с ним может такой-то микроб (O. formigenes). Если у вас склонность к появлению камней в почках, нужно просто принимать в пищу соответствующие пробиотики, логично? Такие пробиотики существуют, но, увы, они не особо эффективны. Почему?

Возможны два варианта, и оба способны научить нас кое-чему важному. Во-первых, мало просто дать животному бактерий и надеяться на лучшее. Микробы – живые существа, им нужно чем-то питаться. O. formigenes питается только оксалатами, а если у человека камни в почках, он вряд ли будет употреблять в пищу богатые оксалатами продукты. Попав в его организм, она умрет от голода. Кстати, фермерам рекомендуют хотя бы неделю кормить скот леуценой, перед тем как обработать его смесью Synergistes. Тогда новоприбывшим бактериям хватит пищи.

Вещества, которыми питаются лишь полезные микробы, – это пребиотики. Вообще-то оксалаты и леуцену к ним тоже можно отнести, но в основном это растительные углеводы, такие как инулин, очищенные и представленные в форме пищевых добавок. Эти вещества позволяют увеличить численность важных микробов, например F. prausnitzii и Akkermansia, а также, возможно, снижают аппетит и снимают воспаление. А вот нужно ли их принимать в качестве пищевых добавок – другой вопрос. Мы знаем, что пища может внести в наш кишечный микробиом значительные изменения, а пребиотики, в том числе инулин, в больших количествах содержатся в луке, чесноке, артишоках, цикории, бананах и много где еще.

Олигосахариды человеческого молока тоже относятся к пребиотикам – они питают B. infantis и других микробов, умеющих их расщеплять. Педиатр Марк Андервуд считает, что с их помощью можно спасать самых уязвимых людей на свете – недоношенных младенцев. Он руководит неонатальным отделением интенсивной терапии при Калифорнийском университете в Дейвисе. Там под опекой медиков постоянно находится до 48 недоношенных младенцев. Самые ранние из них родились на двадцать третьей неделе, а самые легкие весят где-то полкилограмма. Как правило, они появляются на свет путем кесарева сечения, затем проходят курс антибиотиков и в итоге оказываются в абсолютно стерильной среде. Без стандартных микробов-первопроходцев их микробиом развивается крайне странным образом: привычных бифидобактерий в нем мало, а захватывающих свободные территории патогенов-оппортунистов – много. Вот вам отличный пример дисбиоза, и такие необычные сообщества у младенцев внутри могут привести к некротическому энтероколиту – заболеванию кишечника, нередко заканчивающемуся смертельным исходом. Врачи не раз пытались предотвратить развитие некротического энтероколита с помощью пробиотиков, причем небезуспешно. Андервуд же, посоветовавшись с Брюсом Джерманом, Дэвидом Миллзом и другими, решил улучшить их результаты, кормя младенцев смесью из B. infantis и грудного молока. «Пища бактерий так же важна, как и сами бактерии! Она им помогает размножаться и заселять среду с довольно-таки жесткими условиями», – объясняет он. В небольшом пилотном исследовании он доказал, что B. infantis при наличии в меню своей любимой еды действительно успешнее заселяет кишечник детей, рожденных раньше срока. Сейчас он запустил более масштабное клиническое исследование, чтобы выяснить, сможет ли смесь пробиотика с B. infantis и молочных пребиотиков предотвратить развитие некротического энтероколита.

Второе, что мы можем принять к сведению из рассказов о Synergistes и Oxalobacter, – важность совместной работы. Бактерии обитают не в вакууме. Представители разных видов часто создают сложные и запутанные сообщества, в которых полагаются друг на друга в плане пищи и всего необходимого. Даже если кажется, что с проблемой способен справиться один-единственный микроб, он может нуждаться в группе поддержки лишь для того, чтобы выжить. Возможно, именно поэтому пробиотик с Synergistes так славно работает – других желудочных микробов в нем также немало. Не исключено, что по той же причине не работает пробиотик с Oxalobacter – в нем бактериям не с кем поиграть. Вот и с другими микробами так же. Можно, конечно, помечтать о пакетике с F. prausnitzii, способном излечить воспалительные заболевания кишечника, или о пилюле с Akkermansia, что позволит вам похудеть, но я бы сильно на такое не рассчитывал.

Возможно, разумнее было бы создавать пробиотики из сообщества микробов, работающих дружно и слаженно. В 2013 году японский исследователь Кениа Хонда открыл 17 штаммов Clostridia, способных облегчить воспаление в кишечнике. На основе этих результатов бостонская компания Vedanta BioSciences разработала мультимикробную смесь для лечения воспалительных заболеваний кишечника. Клинические исследования этой смеси планировались как раз на то время, когда эта книга поступила в печать. Сработает ли она? Кто знает. Однако настраивать микробиом с помощью целой группы взаимодействующих микробов явно логичнее, чем с помощью одного штамма. В конце концов, самый успешный метод манипулирования микробиомом работает именно так.

В 2008 году Александр Хоруц, гастроэнтеролог при Миннесотском университете, познакомился с женщиной 61 года – назовем ее Ребеккой. На протяжении восьми месяцев ее постоянно мучали приступы диареи – она потеряла 25 килограммов, ей приходилось перемещаться на инвалидной коляске и пользоваться подгузниками для взрослых. Виновником оказалась Clostridium difficile – бактерия, известная также как C-diff. Дурную славу ей принесла живучесть – иногда бактерия делает вид, что сдалась под напором антибиотиков, а потом вырабатывает к ним устойчивость и появляется снова. Именно так она и вела себя в организме Ребекки. Врачи перепробовали кучу лекарств – безуспешно. «Она уже всю надежду потеряла», – вспоминает Хоруц. Она исчерпала все средства, которые могли бы ей помочь.

Все, кроме одного. Хоруц подумал-подумал и вспомнил, что в медицинском колледже узнал об одном методе, известном как пересадка микрофлоры кишечника. Все просто: врач берет у донора образец стула и вместе с микробами и всем остальным пересаживает его в кишечник больного. И вызванную C-diff инфекцию такая пересадка вроде как тоже могла вылечить. Эта процедура казалась всем дурацкой, ненадежной и отвратительной. Но Ребекка была не против, ведь ей хотелось выздороветь – чем скорее, тем лучше. Она дала согласие на пересадку. Образец стула предоставил ее супруг. Хоруц с помощью блендера превратил стул в кашицу, которую затем ввел Ребекке в кишечник во время колоноскопии.

В течение дня прекратилась диарея. В течение месяца исчезла C-diff – и на этот раз не вернулась. От нее полностью избавились – быстро и надолго.

Хоть случай Ребекки и единичный, он все же вполне классический. У сотен рассказов о пересадке микрофлоры кишечника сюжет похож: больной, которого никак не получается избавить от C-diff, отчаявшийся врач и чудотворное исцеление. В некоторых случаях врачи узнают об этой процедуре от больных. Так, Элейн Петроф из Университета Квинс в Кингстоне (Канада) в 2009 году безуспешно пыталась вылечить женщину от инфекции C-diff, и тут к ней начали заходить члены семьи пациентки с ведерками кала. «Я уж подумала, что они немного того, – вспоминает она. – А потом посмотрела на то, как женщине становилось все хуже и хуже, и подумала: а что мы теряем? Мы провели процедуру и – представьте себе – все получилось! Вот она стояла на пороге смерти – а тут вышла из больницы практически здоровая и в прекрасном виде».

Пересадка стула – это, конечно, гадость, как в теории, так и на практике – кому-то ведь приходится использовать этот несчастный блендер. Однако «больным неважно, что это фу», утверждает Петроф: «Они готовы на что угодно. Часто они просто меня перебивают и спрашивают: а где подписать?» И действительно – мы, люди, отличаемся от других животных своей неприязнью к фекалиям. Многие животные – копрофаги: они с удовольствием едят помет друг друга, чтобы обзавестись нужными микробами. Шмели и термиты таким образом распространяют бактерий по всей колонии – получается своего рода коллективная иммунная система, защищающая колонию от паразитов и патогенов. Пересадка микрофлоры кишечника в этом плане куда приятнее – хотя бы ничего жевать не надо. Бактерий в организм поставляют с помощью колоноскопии, клизмы или вставленной в нос трубки, идущей в желудок или кишечный тракт.

Процедура эта действует по тем же принципам, что и пробиотик, только вместо одного или семнадцати штаммов бактерий она позволяет получить сразу все. Это пересадка экосистемы, своеобразная попытка наладить дела в неустойчивом сообществе, полностью его заменив, – так же на лужайке, заросшей одуванчиками, заново выращивают газон. Хоруц показал, как действует эта процедура, взяв образец кала Ребекки до и после пересадки. До пересадки у нее в кишечнике творилось невесть что. Из-за нашествия C-diff ее микробиом полностью изменился и стал напоминать «что-то, чего вообще в природе не существует, – как будто другая галактика», дивится Хоруц. А вот после пересадки он стал неотличим от микробиома ее мужа. Его микробы ворвались в ее дисбиотический кишечник и вернули его в исходное положение. Хоруц словно провел пересадку органа – заменил больной и поврежденный микробиом пациентки на новенький и здоровый донорский. Получается, что микробиом – единственный орган, который можно заменить без операции.

Пересадкой стула в мире занимаются вот уже как минимум 1700 лет. Самые ранние упоминания об этой процедуре были найдены в руководстве по неотложной медицинской помощи, написанном в Китае в IV веке. Европейцы подключились гораздо позже – в 1697 году немецкий врач написал о пересадке стула книгу с оригинальным названием Heilsame Dreck-Apotheke – «Целебная аптека из скверны». В 1958 году об этой процедуре вспомнил американский хирург Бен Айземан, но спустя лишь год его открытие оказалось в тени ванкомицина – нового антибиотика, хорошо справляющегося с C-diff. Хоруц как-то писал, что к пересадке микрофлоры кишечника «прибегали в единичных случаях, очень редко публиковали результаты и хихикали, натыкаясь на статьи о ней, не один десяток лет». Однако окончательно о ней так и не забыли. В последние лет десять ее начали использовать отважные врачи, многие больницы включили ее в перечень услуг, истории успешных трансплантаций стали накапливаться.

Апогей наступил в 2013 году, когда нидерландская группа исследователей под руководством Джозберта Келлера провела тестирование пересадки стула в рандомизированном клиническом испытании – именно так в медицине отличают рабочие методы лечения от шарлатанства. В спытании участвовали пациенты с рецидивирующей инфекцией C-diff – их случайным образом распределили так, что одни принимали ванкомицин, а другим провели пересадку кишечной микрофлоры. Планировалось, что участие примут 120 добровольцев, но набралось всего 42. Так или иначе, ванкомицин вылечил лишь 27 % принимавших его больных, а вот пересадка микрофлоры помогла аж 94 %. Налицо был такой высокий уровень эффективности этой процедуры, что было решено прекратить давать больным антибиотики. Испытание было завершено досрочно, и пересадку микрофлоры прошли уже все пациенты.

В медицине показатель эффективности лечения тяжелобольных в 94 % без заметных побочных эффектов – нечто неслыханное. К тому же пересадка микрофлоры кишечника еще и крайне малозатратна – ванкомицин обходится дорого, а кал вообще бесплатный. Многие из тех, кто прежде относился к этой процедуре скептически, решили, что это не «дурацкая нетрадиционная методика», а очень даже впечатляющая и полезная, а значит, прибегать к ней нужно первым делом, а не когда вариантов больше не остается. У врачей есть поговорка: альтернативной медицины не бывает – если что-то работает, это просто медицина. Рост популярности пересадки микрофлоры кишечника у работников медицины эту поговорку подтверждает. Хоруц с помощью этой процедуры избавил от C-diff не одну сотню людей. Петроф тоже. Доклады об успешном проведении пересадки стула поступают из больниц по всему миру тысячами.

Благодаря столь блестящему успеху врачи решили опробовать пересадку стула и при других недугах. Раз уж она на отлично справилась с C-diff, почему бы ей не лечить воспалительные заболевания кишечника и не восстанавливать в экосистеме порядок? Увы, не все так просто. При таких заболеваниях эффективность и надежность методики ниже, а побочных эффектов и случаев рецидива больше. А как насчет других недугов? Может ли кал худого человека помочь сбросить вес толстяку? Здесь пока тоже непонятно. Несколько врачей опубликовали сведения о том, что пересадка микрофлоры помогла при ожирении, синдроме раздраженного кишечника, аутоиммунных и психических заболеваниях и даже аутизме, но по единичным случаям невозможно выяснить, что же помогло больным вылечиться – пересадка стула, естественная ремиссия, изменения в образе жизни, эффект плацебо или еще что-нибудь. Мифы от реальности можно отделить лишь с помощью клинических испытаний, и сейчас полным ходом идут уже несколько десятков. Например, нидерландские ученые, что провели тот самый опыт с C-diff, устроили еще одно испытание. 18 добровольцев, страдающих ожирением, были разделены на две группы: одним в кишечник ввели их собственных микробов, а другим – микробов из кишечника стройных людей. Члены группы со «стройными» микробами стали более чувствительны к инсулину, что указывает на улучшение обмена веществ, но вес у них остался прежним. Сбросить экосистему микробов до исходного состояния нелегко даже с помощью пересадки микрофлоры.

C-diff – исключение, подтверждающее это правило. Заражение, как правило, происходит после приема антибиотиков, и, чтобы от нее избавиться, больные принимают еще больше антибиотиков. После такой фармакологической «ковровой бомбардировки» из кишечника исчезают многие местные микробы. Соперников у прибывших микробов донора практически нет, тем более привыкших жить в кишечнике, так что те спокойно его заселяют. Если бы вы пытались создать заболевание, которое можно вылечить путем пересадки микрофлоры кишечника, у вас бы получилось что-то похожее на инфекцию C-diff. А вот ничего похожего на воспалительные заболевания кишечника не получилось бы – при них бактериям донора приходится терпеть неблагоприятные условия и пытаться заселить кишечник, где приспособленных к нему микробов уже и так хватает. Хоруц задается вопросом: нужно ли больным проходить курс антибиотиков перед пересадкой, чтобы избавиться от имеющихся кишечных микробов и дать новичкам фору? А может, лучше включить в питание пребиотики, чтобы им помочь? Как бы там ни было, «нельзя просто взять и накачать человека микробами, а потом надеяться, что пересадка сработает», отмечает Коруц. «Думаю, многие посчитали пересадку микрофлоры кишечника чудодейственным средством, способным справиться с их заболеванием, не подумав при этом обо всех ее тонкостях».

Да и при C-diff с пересадкой микрофлоры кишечника все не так уж однозначно. Кал нужно тщательно проверить на отсутствие патогенов, таких как ВИЧ и гепатит. Некоторые врачи отказываются брать для процедуры кал доноров, страдающих от любых связанных с микробиомом болезней, будь то аллергия, аутоиммунные заболевания или ожирение. На это уходит немало времени, а потенциальных доноров становится все меньше и меньше – в некоторых медицинских учреждениях из-за этого решили замораживать и хранить кал доноров, подходящих по всем критериям. Как раз этим занимается некоммерческая организация OpenBiome. Если будущий донор успешно проходит целую серию анализов, его кал фильтруют, формируют из него капсулы, замораживают их и по необходимости отправляют в больницы. Этим же Хоруц занимается в Миннесоте. В 2011 году та самая Ребекка снова вернулась к нему с C-diff, и он ее вылечил с помощью замороженного образца кала. В 2014 году она пришла снова – и на этот раз для пересадки ей понадобилось лишь проглотить капсулу. «Первопроходцем она побывала неоднократно», – улыбается Коруц.

Сам факт того, что больные принимают внутрь капсулу с замороженными фекалиями, говорит о том, что пересадка микрофлоры кишечника – процедура как минимум странная. Вот у нас, казалось бы, обычная капсула, но состоит она из невесть чего – вещества, которое выходит не с заводов по производству лекарств, а из заднепроходных отверстий доноров. А еще у этих капсул всегда разный состав. В Управлении по санитарному надзору за качеством пищевых продуктов и медикаментов США от такого разнообразия смутились и решили, что с мая 2013 года кал будет считаться лекарством, а значит, врачам для проведения пересадки микрофлоры кишечника придется заполнять целую кучу разных форм и заявок. Тут же посыпались жалобы от больных и врачей – из-за длительного оформления документов пациенты лишались возможности поскорее вылечиться. Шесть недель спустя для случаев заражения C-diff постановление отменили, но для всех остальных заболеваний оно осталось в силе. Одни исследователи считают все эти нормативные процессы пустой тратой времени. Другие же утверждают, что благодаря им у них наконец появилось время спокойно поработать. В последние годы интерес к процедуре пересадки микрофлоры кишечника подскочил до небывалых высот, так что требуется поскорее испробовать ее для лечения самых разных заболеваний.

Проблема в том, что о долговременных рисках этой процедуры никто не задумывается. По опытам на животных ясно, что после пересадки микробиома у реципиентов с большей вероятностью развиваются воспалительные заболевания кишечника, сердечные и психические расстройства, диабет, ожирение и даже рак, а мы до сих пор не можем предсказать с достаточной точностью, какие именно сообщества микробов за эти заболевания отвечают. Семидесятилетней пациентке с C-diff, может, и без разницы – ей нужно вылечиться вот прямо сейчас. А как же молодежь до тридцати лет? У них C-diff проявляется все чаще. А дети? Эмма Аллен-Верко рассказала мне о врачах и родителях, проведших пересадку кала детям-аутистам. «Это же просто ужас, – возмущается она. – Какашки взрослого человека в детском организме! А вдруг из-за этого у них потом разовьется рак прямой кишки или еще что похуже? По-моему, это попросту опасно».

В пересадке кала нет ничего сложного, ее можно и самому дома провести – собственно, многие так и делают. В интернете появились видеоинструкции и воодушевляющие записи о пересадке, а также крупные сообщества людей, что провели эту процедуру самостоятельно. Эти ресурсы действительно помогли многим нуждавшимся в лечении больным, которым отказали врачи. Однако к пересадке прибегают и люди, введенные в заблуждение обилием информации. Вне лаборатории искать патогенных микробов в кале донора не представляется возможным, так что несколько человек уже обратились в больницу с тяжелыми случаями инфекции после домашней пересадки. «Дикий Запад какой-то, – злится Аллен-Верко. – Кто попало использует чей попало кал». Группа ведущих специалистов в области микробиома, осознав эти проблемы, недавно призвала исследователей сделать процедуру формальной, начать собирать данные для систематизации доноров и реципиентов, а также докладывать обо всех замеченных побочных эффектах.

Петроф с ней согласна. «Думаю, все понимают, что кал – это временная мера, – объясняет она. – Рано или поздно нужно перейти на предопределенные смеси». Другими словами, необходимо создать особое сообщество микробов с теми же преимуществами, что и кал донора. Пересадка кала без кала. Заменитель стула. Поддельные какашки. Фейкалии. Петроф вместе с Аллен-Верко отыскали самого здорового донора, какого только могли, – женщину в возрасте 41 года, ни разу в жизни не принимавшую антибиотики. Ученые занялись выращиванием ее кишечных бактерий, убирая по пути каждую, что проявляла хоть малейшие признаки вирулентности, токсичности или устойчивости к антибиотикам. Осталось сообщество из 33 штаммов – Петроф назвала его RePOOPulate. Она протестировала новую смесь на двух пациентах, зараженных C-diff. Спустя несколько дней оба были здоровы.

Это лишь пробное исследование, но Петроф убеждена, что будущее пересадки микрофлоры кишечника стоит за RePOOPulate. За разработку новых смесей микробов для пересадки взялись и коммерческие предприятия. Эти смеси представляют собой или упрощенный вариант пересадки кала, или улучшенный пробиотик. Состоят они из определенных штаммов, которые можно снова и снова готовить по одному и тому же выверенному рецепту. И как утверждает Петроф, они куда лучше, чем самые разнообразные сообщества микробов в настоящем кале, о которых мы мало что знаем. Пересадка невесть чего в кишечник больного – дело рискованное. А вот RePOOPulate – образец точности. Однако созданным вручную сообществам приходится сталкиваться с теми же сложностями, что и пробиотикам: одна группа бактерий не сможет вылечить все болезни, да и всех больных одной болезнью тоже. «Мы не считаем, что должна быть лишь одна экосистема на все случаи жизни. Не станете же вы устанавливать восьмицилиндровый двигатель на малолитражку – вы так кого-нибудь убьете», – объясняет Аллен-Верко. В идеале скоро появится целый набор смесей RePOOPulate – возможно, они будут приспособлены для лечения разных болезней. Единой смеси для всех не будет. Каждую нужно будет разрабатывать для отдельных целей.

Вот уже несколько столетий врачи прописывают больным с сердечной недостаточностью дигоксин. Это лекарство – модифицированный вариант вещества, содержащегося в наперстянке, – заставляет сердце биться сильнее, медленнее и более регулярно. Обычно заставляет, по крайней мере. На одного больного из десяти дигоксин не действует. Виной тому кишечная бактерия Eggerthella lenta – она переводит лекарство в неактивную форму, совершенно бесполезную с точки зрения медицины. Так себя ведут лишь некоторые штаммы E. lenta. В 2013 году Питер Тернбо выяснил, что проблемные штаммы от нейтральных отличаются лишь двумя генами. Он считает, что врачи для определения путей лечения могут опираться на наличие этих генов в микробиоме больного. Если их там нет – отлично, можно выписывать дигоксин. Если есть, больному придется налегать на белки – судя по всему, они не позволяют генам приводить лекарство в негодность.

И речь сейчас лишь об одном лекарственном средстве. Микробиом влияет и на многие другие. Ипилимумаб, новое популярное лекарство от рака, провоцирует иммунную систему нападать на опухоли, но только в присутствии кишечных микробов. Сульфасалазин, применяющийся в лечении ревматоидного артрита и воспалительных заболеваний кишечника, начинает действовать лишь тогда, когда кишечные микробы его активируют. Иринотекан используют для лечения рака толстой кишки, но некоторые бактерии делают его более токсичным, что приводит к серьезным побочным эффектам. Даже эффективность парацетамола (ацетаминофена), одного из самых популярных лекарственных средств в мире, зависит от кишечных микробов больного. Мы снова и снова замечаем, как сильно вариации у нас в микробиоме могут повлиять на действие лекарств, которые мы принимаем, даже тех, что состоят из одного-единственного, хорошо нам известного и неживого вещества. А теперь представьте, что может произойти, когда мы проглатываем пробиотик или капсулу с калом, состоящие из множества сложных, постоянно развивающихся живых организмов, о которых мы мало что знаем. Это живые лекарства. Вероятность того, подействуют они или нет, зависит от микробиома больного в данный момент, а он, в свою очередь, зависит от возраста, места жительства, питания, пола, генов и множества других факторов, в которых мы сами пока не до конца разобрались. Зависящие от условий последствия были заметны в опытах на мухах, рыбках и мышах. Глупо было бы предполагать, что на человека они не распространяются.

А значит, нужны индивидуальные смеси. Не будем же мы полагаться на то, что с помощью одних и тех же штаммов пробиотиков или образцов кала донора можно будет вылечить разные заболевания. Гораздо разумнее будет разрабатывать пробиотики, учитывая все экологические вакансии в организме человека, особенности его иммунной системы и болезни, к которым он генетически предрасположен.

А еще врачам придется одновременно лечить как больного, так и его микробов. Если пациентка, страдающая от воспалительного заболевания кишечника, примет противовоспалительное лекарство, не исключено, что ее микробиом вернется в прежнее состояние воспаления. Если она предпочтет пробиотики или пересадку микрофлоры, возможно, новые бактерии в воспаленном кишечнике попросту не выживут. Если она перейдет на богатую клетчаткой пищу, то есть пребиотики, но при этом у нее в кишечнике не будет расщепляющих клетчатку микробов, ее состояние, скорее всего, ухудшится. Поэтапные решения здесь не подойдут. Не получится вылечить обесцвеченный коралловый риф или лишенный растительности луг, запустив туда нужных животных или посадив нужные растения, – возможно, придется еще и избавиться от инвазивных видов или взять под контроль поступление в экосистему питательных веществ. Вот и с нашим организмом так же. Нужно управлять всей экосистемой сразу – хозяином, микробами, питательными веществами, вообще всем. И для этого нужен комплексный подход.

Вот каким он может быть. Если у человека в организме повышенный уровень холестерина, врач обычно прописывает ему лекарства, известные как статины, – они блокируют необходимый для вырабатывания холестерина фермент. Однако Стэнли Хэйзен выяснил, что в качестве мишени отлично подойдут и кишечные бактерии. Некоторые из них превращают холин, карнитин и другие питательные вещества в соединение под названием триметиламиноксид (ТМАО), а оно замедляет распад холестерина. ТМАО накапливается в организме, а вместе с ним и жировые отложения в артериях. Это приводит к атеросклерозу – уплотнению стенок артерий – и другим заболеваниям сердечно-сосудистой системы. Научная группа Хэйзена уже выявила вещество, способное положить этому процессу конец. Оно не дает бактериям вырабатывать ТМАО, не причиняя им никакого вреда. Возможно, это или похожее вещество в медицинском шкафчике будущего окажется на одной полке со статинами, ведь эти лекарства дополняют друг друга: одно нацелено на человеческую половину симбиоза, а другое – на микробную.

И это лишь малая часть всего, на что способна медицина микробиома. Представьте, что вы перенеслись в будущее на десять, двадцать, ну пусть тридцать лет. Вы у врача. В последнее время вы что-то на нервах, так что он прописывает вам бактерию, которая влияет на нервную систему и подавляет нервозность. И холестерин у вас немного повышен – врач добавляет к той бактерии микроба, что вырабатывает понижающее его вещество. Уровень вторичных желчных кислот у вас в кишечнике ниже нормы, а значит, высок риск заражения C-diff – лучше добавить штамм, за эти кислоты отвечающий. В вашей моче содержатся молекулы, указывающие на воспаление, а так как у вас еще и генетическая предрасположенность к воспалительным заболеваниям кишечника, врач добавляет бактерию, вырабатывающую противовоспалительные молекулы. Он выбрал именно эти виды не только за их способности – он уверен, что они поладят с вашей иммунной системой и микробиомом. Наконец, врач завершает смесь горсткой второстепенных бактерий для поддержки лечебной основы и дает вам рекомендации по питанию, чтобы бактериям было что пожевать. Кабинет вы покидаете с индивидуальными пробиотическими пилюлями – лекарством, созданным для того, чтобы лечить не любую микробную экосистему, а именно вашу. Как выразился в нашем разговоре микробиолог Патрис Кани, «будущее делается на заказ».

И в этом будущем на заказ мы не остановимся на том, чтобы отобрать нужных для определенных задач бактерий. Некоторые ученые уже отбирают нужные для этих задач гены и собирают из них бактерий ручной работы. Вместо того чтобы искать виды с нужными способностями, они возятся с уже имеющимися микробами и наделяют их новыми навыками.

В 2014 году Памела Силвер из Гарвардской медицинской школы оснастила кишечную палочку – самого известного микроба на свете – генетическим переключателем, реагирующим на присутствие антибиотика тетрациклина. Если все необходимые условия соблюдены, при его появлении переключатель активирует ген, придающий бактериям синий цвет. Силвер добавила этих бактерий в корм лабораторных мышей. Так она могла определить, давали ли мышам тетрациклин: нужно было собрать их помет, вырастить микробов из него и посмотреть, какого они цвета. Она успешно превратила кишечную палочку в крошечного репортера, который чует, запоминает и докладывает обо всем, что происходит в кишечнике.

Такие репортеры нам нужны, ведь кишечник для нас – все еще загадка. Длина этого органа – 8,5 метра, а изучают его, как правило, по тому, что из него выходит. Это как если бы мы решили поставить в устье реки решето и описать реку по тому, что в нем окажется. Колоноскопия позволяет узнать о кишечнике больше, но это вторжение в организм. Почему бы вместо того, чтобы засовывать трубку в одно отверстие, не запустить бактерий в другое? Выйдя из организма, они смогут рассказать нам обо всем, что видели в пути. И я сейчас не про тетрациклин – это лишь пробный эксперимент. Силвер хочет настроить микробов так, чтобы они реагировали на присутствие токсинов, лекарств, патогенов и веществ, появляющихся на ранних стадиях заболеваний.

В идеале она планирует создать бактерий, способных замечать неполадки в организме и исправлять их. Представьте, как некий штамм кишечной палочки опознает молекулы, которые производит сальмонелла, и начинает вырабатывать антибиотик, чтобы от нее избавиться. Теперь кишечная палочка не просто репортер – она еще и лесничий. Во время кишечных патрулей она могла бы предотвращать пищевые отравления, расправляясь с сальмонеллами, а в отсутствие угроз бездействовала бы. Можно было бы давать ее детям из бедных стран, предрасположенным к инфекционным диарейным заболеваниям. Или солдатам, отправленным воевать за рубеж. Или посылать в места, где бушует эпидемия.

Микроскопических подручных себе строят и другие ученые. Мэттью Ук Чан настроил кишечную палочку так, чтобы та отыскивала и уничтожала Pseudomonas aeruginosa, бактерию-оппортуниста, поражающую людей со слабым иммунитетом. Искусственные бактерии, почуяв жертву, направляются к ней, шевеля жгутиками, и выпускают два боезаряда – фермент, дробящий сообщества P. aeruginosa, и антибиотик, поражающий самые уязвимые его части. Джим Коллинз из Массачусетского технологического института тоже занимается разработкой кишечных бактерий для уничтожения патогенов. Его микробы охотятся на холерный вибрион и шигеллу, вызывающую дизентерию.

Силвер, Чан и Коллинз занимаются синтетической биологией – молодой отраслью науки, в которой инженерное мышление орудует в мире клеток и тканей. Жаргон у них практичен и бесстрастен: гены для них – «части» или «кирпичики», из которых можно собрать «модули» и «цепи». Зато сами они так и пышут творческой энергией. Популяризатор науки Адам Резерфорд как-то сравнил их с диджеями хип-хопа 1970-х годов – те положили начало новому музыкальному направлению, составляя новые крутые комбинации из уже существующих семплов и битов. Вот и специалисты по синтетической биологии создают ремиксы из генов, чтобы дать начало новому поколению пробиотиков.

«С бактериями в этом плане проще – тут можно развернуться», – говорит специалист по клетчатке Джастин Зонненберг. Бактерия, встречающаяся в естественной среде, может прекрасно справляться с расщеплением клетчатки, переговорами с иммунной системой или созданием нейромедиаторов, но со всем сразу – вряд ли. Хотите новое качество – придется искать новых бактерий. Или просто загрузить нужные цепи в один-единственный синтетический микроорганизм. «Планируется создать список частей, которые можно будет добавлять и сразу с ними работать, ожидая предсказуемых результатов», – делится планами Зонненберг.

Специалисты по синтетической биологии занимаются не только охотой на патогенов. Они также могут настроить созданных микробов так, чтобы те уничтожали раковые клетки или делали токсины полезными. Некоторые из них пытаются дать новый толчок природной способности нашего микробиома создавать антибиотики для контроля над другими микробами, или иммунные молекулы для избавления от хронического воспаления, или нейромедиаторы для влияния на наше настроение, или сигнальные молекулы, отвечающие за аппетит. Если вам кажется, что это вмешательство в природу, вспомните, что мы и так все это делаем, только более топорно – принимаем аспирин, флуоксетин и другие лекарства. В результате наш организм заполняется препаратами, попадающими туда в фиксированных дозах. А вот специалисты по синтетической биологии могут запрограммировать бактерию так, чтобы она вырабатывала тот же препарат там, где нужно, и ровно столько, сколько требуется. Эти микробы лечат с точностью до миллиметра и миллилитра.

Теоретически, во всяком случае. «Сделать так, чтобы цепь работала на доске у вас в офисе, проще простого, – объясняет Коллинз. – Но биология – штука запутанная. Создать нового микроба не так просто, как порой кажется. Задача в том, чтобы заставить цепь работать именно так, как она должна работать в тяжелых условиях организма хозяина». Для переключения гена, например, требуется энергия – возможно, синтетическая бактерия, загруженная сложными цепями, не сможет выжить посреди местных микробов с более стройными и гибкими геномами.

Один из способов добавить искусственным бактериям конкурентоспособности – его, кстати, предпочитает Зонненберг – это внедрение синтетических цепей генов в типичного жителя кишечника, например B-theta, вместо более знакомой нам кишечной палочки. Управлять кишечной палочкой проще, но с заселением кишечника она, увы, не справляется. А вот B-theta прекрасно приспособлена к кишечной среде и живет там в больших количествах. Что еще пожелать от будущего лесничего человеческой экосистемы? Джим Коллинз более осмотрителен. Мы еще очень многого не знаем об устройстве микробиома, так что его настораживает перспектива создания микробов, которые вполне могут сделать наш кишечник своим постоянным местом жительства. Поэтому он встраивает в свои создания переключатели, благодаря которым микробы самоуничтожаются, если что-то идет не так, а также когда они покидают организм хозяина. (Таких бактерий важно изолировать, ведь при каждом нажатии кнопки смыва в туалете они могут попасть в среду.) Силвер тоже трудится над мерами безопасности. Она вносит изменения в ДНК своих синтетических микробов, пытаясь выстроить биологическую систему защиты, не позволяющую им обмениваться генами с дикими сородичами, как принято у бактерий. Еще она планирует создать синтетические сообщества бактерий – группы, скажем, из пяти видов, полагающихся друг на друга: если представители одного вида погибнут, все остальные последуют их примеру.

Пока неясно, смогут ли эти меры удовлетворить требования органов государственного регулирования и успокоить потребителей. Вокруг генетически модифицированных организмов постоянно ведутся споры, и если уж пробиотики и пересадка кала нас чему-то научили, так это тому, что мир пока не справляется с волной живых лекарств. С распространением синтетической биологии эти противоречия лишь умножатся. Однако стоит заметить, что все эти запрограммированные бактерии на самом деле не совсем синтетические. Да, они обладают необычными навыками, и гены у них настроены по-новому, но в душе они остаются кишечными палочками, B-theta и другими нашими давними приятелями, с которыми мы вот уже миллионы лет живем бок о бок. Это все те же старые добрые симбионты, только с современной изюминкой.

Пожалуй, еще более впечатляющим нам покажется создание нового симбиоза – объединение животных и микробов, никогда прежде не пересекавшихся. Одна группа исследователей на это потратила больше двадцати лет. Плоды их работы уже вовсю жужжат в воздухе восточной Австралии.

4 января 2011 года, австралийский городок Кэрнс только начал просыпаться. Скотт О’Нилл в очках, джинсах и грязно-белой футболке, на нагрудном кармане которой написано «Ликвидируем денге» (Eliminate Dengue), подходит к одноэтажному домику с желтыми стенами. Надпись на футболке – это название созданной О’Ниллом организации и ее цель: ликвидировать лихорадку денге в Кэрнсе, Австралии, а когда-нибудь, возможно, и во всем мире. Все, что ему для этого необходимо, находится в небольшом пластиковом стаканчике у него в руке. О’Нилл несет стаканчик к дому, минуя забор, проходит по усаженной цветами террасе и оказывается у высокой пальмы. Шагает он неспешно и, кажется, немного стесняется. Еще бы, ведь это крайне знаменательный момент. Десятка два человек смотрят на него, снимают на камеру, переговариваются и шутят между собой. О’Нилл останавливается и задирает голову. «Ну что, готовы?» – спрашивает он. Толпа радостно аплодирует – они давно ждали этого момента. О’Нилл снимает со стаканчика крышку, и из него вылетают, весело жужжа, несколько десятков комаров. «Вот так! Летите, крошки!» – кричит один из зрителей.

Эти черно-белые комары – представители вида Aedes aegypti, разносчики вируса денге, вызывающего тропическую лихорадку. От укусов этих комаров по всему миру каждый год заражаются 400 миллионов человек. Сам О’Нилл лихорадкой денге никогда не болел, зато он повидал не одного больного. Он знает, каково это – высокая температура, головная боль, сыпь, боли в мышцах и суставах… Он знает, что вакцины нет и полностью вылечить лихорадку нельзя. Единственный реальный способ контролировать денге – предотвратить ее. Мы травим комаров Aedes средствами от насекомых, брызгаемся репеллентами и защищаем тело специальными костюмами, чтобы они до нас не добрались, избавляемся от озер со стоячей водой, в которой они размножаются. Однако лихорадку денге это не останавливает – с каждым годом случаев заражения все больше. Требуется принципиально новое решение, и у О’Нилла такое как раз есть. Его план – весьма необычный – состоит в том, чтобы выпустить в естественную среду еще больше комаров Aedes. Однако его комары кое-чем отличаются от своих диких сородичей. Они переносят бактерию, с которой вы уже знакомы, – суперсимбионта Wolbachia.

О’Нилл выяснил, что вольбахия превращает комаров из переносчиков вируса денге в его последнее пристанище. Изловить всех комаров и заразить их вольбахией, естественно, невозможно, но О’Ниллу и не придется. Ему нужно лишь выпустить на природу несколько переносчиков вольбахии и подождать. Не забывайте, что бактерия эта – мастер манипуляций и распространиться по всей популяции насекомых одного вида ей не составит труда. Чаще всего она прибегает к эффекту цитоплазматической несовместимости: у пораженных вольбахией самок больше шансов отложить яйца с жизнеспособным потомством (которому бактерия передается по наследству), чем у здоровых. Благодаря этому преимуществу вольбахия способна быстро захватить целую территорию – а ее господство означает вырождение вируса денге. О’Нилл планирует выпустить на природу достаточно особей с вольбахией, чтобы создать популяцию устойчивых к вирусу комаров. Те, что были выпущены в Кэрнсе, стали первыми. Это была кульминация многолетней тяжелой и упорной работы, что доводила порой до отчаяния. «За этим словно вся жизнь моя прошла», – говорит О’Нилл.

Его попытки сделать из вольбахии грозу тропической лихорадки начались еще в 1980-х. Несколько лет прошли безрезультатно, его научная группа зашла в изрядное количество тупиков. Кое-что начало получаться лишь в 1997 году – О’Нилл узнал об особо вирулентном штамме вольбахии, поражающем плодовых мушек. Этот штамм окрестили «попкорном»: попав в организм взрослой особи, он принимался стремительно размножаться в ее мышцах, глазах и головном мозге, да так, что нейроны в организме мушки вскоре становились «похожи на кульки с попкорном». У пораженных мушек продолжительность жизни порой сокращалась вдвое. «Тогда для меня это стало «эврикой», – рассказывает О’Нилл. Он знал, что вирусу денге для размножения в организме комара требуется довольно много времени, а чтобы добраться до слюнных желез, из которых он затем попадает в организм нового хозяина, – и того больше. Значит, разносчиками лихорадки могут быть лишь пожилые особи. Если бы у О’Нилла получилось в два раза уменьшить их продолжительность жизни, они умирали бы до того, как у них появится возможность кого-нибудь заразить. Оставалось лишь заразить их «попкорном».

Вольбахия, вообще-то, поражает представителей самых разных видов комаров. Вспомните, ведь впервые ее открыли в Culex, когда никто и представить себе не мог, что она настолько вездесущее создание. Вот только две самых опасных для человека группы, как назло, к ней невосприимчивы: это Anopheles, переносчики малярии, и Aedes, переносчики желтой лихорадки, денге и чикунгуньи. О’Нилл решил заняться созданием совершенно нового симбиоза. Однако нельзя было просто ввести вольбахию в организм взрослой особи. Нужно было заразить яйцо – только тогда вольбахия будет присутствовать во всех органах вылупившегося насекомого. Так что О’Нилл с коллегами уселись за микроскопы и принялись аккуратно протыкать комариные яйца иголкой с вольбахией. За много лет они проткнули сотни тысяч яиц, но у них так ничего и не вышло. «Я всем этим студентам просто-напросто исковеркал карьеру и уже подумывал о том, чтобы сдаться, – вспоминает О’Нилл. – Но мои садистские наклонности не давали мне успокоиться. В 2004 году ко мне в лабораторию зашел один очень уж талантливый студент, и я просто не удержался. Я показал ему наш старый проект, и он принялся над ним работать с таким усердием, какого я давно не видал. Это был Конор Макмениман. Один из лучших студентов, что когда-либо у меня учились. Благодаря ему наша затея сработала». Для этого потребовалась еще не одна тысяча попыток, но в 2006 году Макмениман в конце концов смог успешно заразить яйцо, создав тем самым линию Aedes с вольбахией. В данной книге мы обсуждали союзы между животными и микробами, которым уже много миллионов лет. А этому союзу на момент написания книги исполнилось всего десять.

И после стольких усилий ученые обнаружили в своих планах роковую ошибку: штамм «попкорн» оказался слишком вирулентным. Он не только нес самкам преждевременную смерть – из-за него также уменьшалось количество отложенных ими яиц и понижалась их жизнеспособность, а значит, снижались и шансы бактерий попасть в следующее поколение комаров. В результате экспериментов выяснилось, что в природных условиях он вообще распространиться не сможет. В общем, полный провал.

Однако вскоре О’Нилл понял, что это и не важно. В 2008 году две независимые группы исследователей выяснили, что благодаря вольбахии плодовые мушки становятся невосприимчивы к группе вирусов, вызывающей лихорадку Западного Нила, лихорадку денге, желтую лихорадку и другие заболевания. О’Нилл, узнав об этом, тут же попросил членов своей команды дать зараженным вольбахией комарам попить крови, в которой содержался вирус денге. Закрепиться в организме вирус так и не смог. Вольбахия не давала ему размножаться даже в тех случаях, когда исследователи вводили его напрямую в комариный кишечник. Так выяснилось, что ученым совсем не нужно было сокращать продолжительность жизни комаров с помощью вольбахии. Чтобы остановить распространение вируса денге, требовалось лишь ее присутствие! И что еще лучше, в «попкорне» больше не было нужды. Ту же задачу вполне могли выполнять другие, менее вирулентные штаммы, да и распространиться им было бы куда проще. «Мы столько лет бились головой об стену, а тут оказалось, что и не надо было!» – восторгается О’Нилл.

Исследователи взялись за работу со штаммом wMel. Послужной список по заражению диких популяций насекомых у него внушительный, но товарищ из него выходит куда приятнее, чем у «попкорна»: жизнь не сокращает, мозг не разрушает, яйца не уничтожает. Сможет ли он распространиться? Чтобы это выяснить, было построено два огромных вольера, в которые О’Нилл запустил комаров. На каждую незараженную особь в вольере приходилось два переносчика wMel. Еще в вольеры поставили самодельный навес, чтобы комарам было где спрятаться, и вывалили на пол несколько мокрых и грязных полотенец, чтобы их привлечь. Каждый день по пятнадцать минут в вольеры пускали сочных и мясистых членов команды, чтобы комарам с вольбахией было чем питаться. Каждые несколько дней из вольеров доставали комариные яйца и проверяли, присутствует ли в них вольбахия. Три месяца спустя каждая личинка была заражена wMel. Все говорило о том, что новый план сработает и пора начинать.

Ну, они и начали. С 2006 года – еще до того, как были получены комары с вольбахией, – группа О’Нилла принялась распространять информацию о своей работе среди жителей Йоркис-Ноб и Гордонвейла, пригородов Кэрнса. Привет, говорили ученые, мы хотим избавить мир от лихорадки денге. Да, мы в курсе, что вас всегда учили убивать комаров, чтобы они вас не заразили, но сейчас мы будем вам очень благодарны, если вы нам позволите выпустить в природу еще комаров. Нет, они не модифицированы генетически, зато у них в организме есть микроб, который умеет очень быстро распространяться. Кстати, комары Aedes далеко не улетают, а значит, чтобы все сработало, нам придется выпустить их в самых разных местах, в том числе и у вашего дома. Да, они, скорее всего, вас укусят. Нет, раньше такого никто не делал. Ну что, согласны?

Удивительно, но многие действительно согласились. На протяжении двух лет ученые интервьюировали фокус-группы, устраивали выступления в местных залах, пабах и клиниках, чтобы жители имели возможность обо всем их расспросить. Пришлось постучаться не в одну дверь. «Для нашего проекта требовалось доверие местных жителей. Мы его заработали, но на это ушло немало времени, – рассказывает О’Нилл. – Мы терпеливо всех выслушивали. Если кого-то что-то беспокоило, мы все объясняли, а иногда даже проводили соответствующие опыты». Они показали, например, что вольбахия не заражает рыбу, пауков и других питающихся комарами хищников, а также людей, чьей кровью питаются комары. Со временем даже скептики начали поддерживать их идею. «Местная группа волонтеров, что занимается мобилизацией жителей во время наводнений и циклонов, как-то попросила у нас разрешения походить от нашего имени по домам, чтобы убедить людей разрешить нам выпустить в их дворах комаров, – рассказывает О’Нилл. – Вот такой поворот». К 2011 году, когда комары были готовы, проект получил поддержку 87 % местных жителей.

По-настоящему все началось тем январским утром, когда О’Нилл с важным видом открыл стаканчик с комарами. «Радость нас опьянила, – вспоминает он. – Мы несколько чертовых десятилетий ради этого работали. Вся команда, прошедшая весь этот путь со мной, пришла, чтобы лично присутствовать при этом моменте». Они гордо прошлись по улицам, останавливаясь у каждого четвертого дома, чтобы выпустить несколько десятков комаров. За два месяца они отпустили на волю около 300 тысяч, пришлось лишь ненадолго прерваться из-за циклона. Затем члены команды каждые две недели вылавливали в пригородах комаров с помощью различных ловушек, чтобы осмотреть их организм на присутствие вольбахии. «Получилось даже лучше, чем мы ожидали», – радуется О’Нилл. К маю вольбахия уже уютно устроилась в организмах 80 % комаров в Гордонвейле и 90 % – в Йоркис-Ноб. Всего за четыре месяца на смену почти всем обычным комарам пришли комары, устойчивые к вирусу денге. Ученым впервые удалось изменить обитающую в природе популяцию насекомых так, чтобы те перестали разносить опасную для человека болезнь. И сделали они это с помощью симбиоза.

Однако организация О’Нилла называется не «Модицифируем комаров», а «Ликвидируем денге». Получилось ли у них это? В тех двух пригородах с 2011 года не было новых случаев заражения. Это воодушевляет, если не убеждает окончательно. Однако и особо «лихорадочными» ни тот ни другой пригород никогда не были – как, собственно, и вся Австралия. О’Нилл сможет заявить о своей победе лишь тогда, когда его комары избавят от вируса денге страны, где он представляет наибольшую угрозу. Потому-то сейчас члены его организации работают в Бразилии, Колумбии, Индонезии и во Вьетнаме. В 2004 году все началось с О’Нилла и его лаборантов. Сейчас «Ликвидируем денге» – международный коллектив ученых и работников сферы здравоохранения.

В Австралии же члены научной группы и их комары добрались до северного городка Таунсвилла. Там около 200 тысяч жителей, так что лично постучаться в каждый дом точно не выйдет. Ученые рассчитывают на освещение в СМИ, массовые мероприятия и инициативу местных жителей – помощь предлагают многие, даже школьники. Да и выпускать повсеместно взрослых комаров слишком обременительно. Вместо этого исследователи раздают домовладельцам контейнеры с комариными яйцами, водой и едой, а те выращивают комарят у себя в саду. «Когда-нибудь мы и до тропических мегаполисов доберемся», – мечтает О’Нилл.

Трудности везде возникают разные. К примеру, если в городе щедро используют инсектициды, местные комары вырабатывают к ним частичную устойчивость. Выпускать туда комаров-австралийцев, в жизни не нюхавших средства от насекомых, бессмысленно: они откинут лапки, не успев передать симбионтов следующему поколению. А значит, комарам с вольбахией нужна как минимум та же степень устойчивости, что и местным. Возможно, тут поможет межвидовое скрещивание. Работники индонезийского отделения «Ликвидируем денге» скрещивают переносчиков вольбахии с местными комарами на протяжении нескольких поколений, чтобы их комары стали как можно более похожими на индонезийских. К тому же это поможет им более успешно спариваться. «Каждая местность уникальна по-своему, – говорит О’Нилл. – Однако вольбахия, по нашим наблюдениям, везде справляется отлично. Судя по всему, можно начинать использовать ее по всему миру. Через два-три года у нас будет достаточно доказательств того, что наш метод действительно работает. А лет через десять-пятнадцать, думаю, мы пробьем в армии лихорадки денге заметную брешь».

Скептики не устают напоминать, что у эволюции на любое вмешательство найдется ответ – как бы мы ни бились, она сумеет парировать. Рано или поздно вирус денге выработает устойчивость к покусившейся на его территорию вольбахии и снова примется заражать комаров. Эволюция, как говорил британский ученый Лесли Орджел, умнее вас. Однако Элизабет Макгро, давняя соратница О’Нилла, настроена оптимистично. Результаты исследований ее научной группы говорят о том, что вольбахия защищает комаров от вирусной инфекции не одним способом. Она ко всему прочему укрепляет их иммунитет и поглощает необходимые вирусам для размножения питательные вещества, такие как жирные кислоты и холестерин. «Чем больше у вас защитных мер, тем с меньшей вероятностью у вируса получится выработать устойчивость, – объясняет она. – Нас, эволюционных биологов, такой расклад вполне обнадеживает».

Еще О’Нилл и Макгро утверждают, что перспектива развития резистентности возникает при попытке бороться с вредоносным агентом с помощью инсектицидов, вакцин и тому подобных средств. Вольбахия, в отличие от них, живой организм, а значит, сможет приспособиться ко всем адаптациям вируса. К тому же она безопасна и не требует больших затрат. Инсектициды – штука токсичная, да и распылять их нужно регулярно. Комары же не вызывают никаких побочных эффектов и размножаются самостоятельно. «Нужно только начать, а там их уже будет не остановить, – улыбается О’Нилл. – Мы стараемся снизить затраты до двух-трех долларов на человека».

О’Нилл не скрывает восторга от успехов в исследованиях вольбахии. «Когда-то мы сидели себе спокойно в лаборатории, изучали симбиоз и никого не трогали, – рассказывает он. – А в итоге из обычной отрасли фундаментальной науки вышло нечто удивительное и полезное». Вольбахия справляется не только с вирусом денге, но и с вирусами чикунгуньи и Зика, а также с плазмодиями, вызывающими малярию: так, научная группа из Китая и США оснастила вольбахией малярийных комаров. Другие исследователи сейчас пытаются с помощью вольбахии справиться с мухами цеце и постельными клопами: первые разносят сонную болезнь, вторые вызывают бессонные ночи. «Все это – лишь часть нового менталитета, касающегося микробной экологии живых организмов и ее связи с заболеваниями», – отмечает О’Нилл.

В 1916 году ушел из жизни своенравный русский ученый и любитель прокисшего молока Илья Мечников. Мог ли он себе представить, что когда-то его методы лягут в основу многомиллиардной отрасли производства, продукты которой окажутся на полках супермаркетов по всему миру, несмотря на то что их польза пока так и не доказана? В 1923 году американский микробиолог Артур Исаак Кендалл опубликовал книгу по бактериологии, в которой предсказал, что скоро наступит время, когда кишечные бактерии начнут использоваться в лечении кишечных заболеваний. Мог ли он себе представить, что человеческие фекалии начнут замораживать и рассылать по больницам для пересадки в организм больных? В 1928 году британский бактериолог Фредерик Гриффит обнаружил, что бактерии могут обмениваться друг с другом качествами и меняться с помощью фактора, который позже назовут ДНК. Мог ли он предсказать, что когда-нибудь ученые смогут в рабочем порядке изменять генетический материал микробов с такой точностью, что с помощью этих изменений можно будет заставлять их охотиться друг на друга? А в 1936 году энтомолог Маршалл Гертиг решил назвать никому не известную бактерию в честь своего друга Симеона Вольбаха, с которым они за двенадцать лет до того впервые нашли ее в комаре из Бостона. Мог ли кто-нибудь из них предположить, что вольбахия окажется самой успешной бактерией во всем мире? Или что ее изучением займутся столько исследователей, что раз в два года им придется устраивать конференцию для обсуждения новых связанных с вольбахией открытий? Или что благодаря ей нематоды перестанут делать 150 миллионов человек в год инвалидами или лишать их зрения? Или что исследователи начнут специально вводить ее в комаров по всему миру, чтобы те перестали разносить лихорадку денге и другие заболевания?

Нет, конечно. Микробы скрывались от наших глаз на протяжении почти всего существования человечества – заметить их можно было лишь по вызываемым ими болезням. Они остались в тени даже после того, как Левенгук 350 лет назад впервые их увидел. А когда их наконец заметили, было решено, что они – незваные гости в человеческом мире и с ними нужно не дружить, а расправляться. Позже исследователи узнали, что наш кишечник кишит бактериями и что некоторые устроились даже в клетках насекомых, но их открытия тут же поставили под сомнение и забыли. Лишь недавно микробы перекочевали с окраины биологии в ее центр и получили всеобщее признание. Лишь недавно мы узнали о микромире достаточно, чтобы начать в него вмешиваться. Попытки наши пока что примитивны и неуклюжи, а уверенность в них порой преувеличена, но потенциал – огромен. Наконец-то мы начали использовать для улучшения нашей жизни все, что узнали с тех времен, когда Левенгуку вздумалось рассмотреть воду в пруду.

Поиск

Блок "Поделиться"

Физика

Химия

Методсовет