Созвездие отличников

Начальная школа

Школярик

Русский язык

Тетрадкин Град

Литература

История

Биология

География

Математика

Сова Филиновна

 

Серьезной проблемой для любого вуза является набор студентов, имеющих достаточный уровень базовой школьной подготовки. Вузы заинтересованы в том, чтобы поступающие к ним абитуриенты как минимум были грамотными и умели логически мыслить. К сожалению, уровень подготовки подавляющего большинства учащихся не соответствует этим требованиям. В случае поступления в вуз такой абитуриент в дальнейшем испытывает сложности при освоении дисциплин, преподаваемых в данном учебном заведении, что, конечно, отражается на квалификации выпускаемого специалиста. Несформированная логика мышления приводит к тому, что студент не способен осваивать теоретический материал, систематизировать его, делать обобщающие выводы. Отсюда – неумение студентов работать с учебной, а в дальнейшем и со специальной литературой, соответствующей профилю подготовки. Основы такого умения, кстати, тоже закладываются в средней школе.

Современная концепция высшего образования ориентирована на самообразование, то есть предполагает способность студентов к самостоятельному изучению материала. Преподаватель в данном случае выступает в роли консультанта, который помогает разобраться в наиболее сложных вопросах. Таким образом, формирование грамотности и логического мышления у школьника – основа успешной и эффективной подготовки будущих специалистов в вузах.

В настоящее время много говорят о достоинствах и недостатках ЕГЭ, но, так или иначе, он прочно вошел в образовательный процесс как завершающий этап школьного образования. При этом многие задачи, входящие во вторую часть ЕГЭ по математике, как раз и предполагают наличие логического мышления у школьника, а процесс подготовки к экзамену направлен на формирование такого мышления и повышение математической грамотности ученика в целом. Выделим это как один из положительных моментов ЕГЭ.

Однако нельзя не отметить, что шансы учащегося справиться на экзамене с задачами повышенной сложности, требующими логического мышления, существенно ограничены временными рамками. При подготовке школьников к ЕГЭ по математике преподаватель неизбежно сталкивается со следующей проблемой. Так как индивидуальные способности учащихся различны, то существенно отличаются и темпы усвоения ими материала на занятиях. Учащийся, который быстро усваивает предлагаемую ему информацию, может рассматривать более сложные разделы данной темы. Слабый же учащийся к этому моменту усваивает минимальный объем информации. Поэтому в рамках одного занятия приходится ориентироваться на средний уровень подготовки. При этом хорошо подготовленные учащиеся не имеют возможности для углубленного изучения материала в соответствии со своими способностями.

Получается, что группа как бы сдерживает рост таких учащихся. Таким образом, перед преподавателем возникает необходимость индивидуализации обучения. В рамках отведенного для занятия времени эффективно организовать индивидуальное обучение очень трудная задача. Для ее решения в распоряжении преподавателя должны находиться соответствующие учебно-вспомогательные материалы, в частности учебно-методические пособия, электронные учебники и другие средства, в которых материал был бы представлен в доступной форме, рассчитанной на самостоятельное изучение учащимися средней школы. Для формирования логического мышления школьника в процессе подготовки к ЕГЭ особенно полезны, по нашему мнению, задачи с параметрами.

Отметим, что этот тип задач принадлежит к числу наиболее сложных как в логическом, так и в техническом плане. Решение задач с параметрами можно считать деятельностью, близкой по своему характеру к исследовательской. Здесь выбор метода, процесс решения, запись ответа предполагают определенный уровень умения анализировать, сравнивать и обобщать полученные результаты. Поэтому, прежде чем приступить к изучению методов решения этих задач, нужно овладеть основными приемами решения различных видов уравнений и неравенств, не содержащих параметры: рациональных, иррациональных, показательных, тригонометрических и других.

Определим основные моменты, к которым нужно привлечь внимание ученика, нацеленного на овладение методами решения задач с параметрами.

Существует два основных подхода к решению задач этого типа: аналитический и графический. Выбор того или иного подхода зависит от типа задачи. Чтобы определить алгоритм решения задачи с параметром, необходимо задать себе простой вопрос: как бы решалась эта задача, если бы вместо параметра стояло конкретное число? При этом не следует забывать, что параметр, в действительности являясь числом, может принимать любые значения.

Вначале следует попробовать решить задачу при конкретном значении параметра, при этом оценить сложность преобразований и постараться понять закономерность, существующую между значением параметра и результатом. При этом иногда приходится повторять решение несколько раз с разными значениями параметра.

В случае, если аналитическое решение оказывается слишком сложным, следует рассмотреть возможность привлечения графических иллюстраций для упрощения решения. При аналитическом решении задачи следует понимать, что любое уравнение с параметром является фактически семейством уравнений, рассматриваемых при фиксированном значении параметра. При разных значениях параметра приходится использовать различные методы, применяемые при решении уравнений и неравенств с постоянными коэффициентами. Поэтому основной принцип аналитического решения задач с параметрами заключается в разбиении области изменения параметра на такие участки, что на каждом из них получается уравнение или неравенство, которое можно решить одним и тем же методом.



Информатика

Знаев

Физика

Химия

Поиск

Блок "Поделиться"

Петербурговедение

Яндекс.Метрика Рейтинг@Mail.ru